
Linked Lists in C++
Dynamic data structures for efficient handling of variable-sized data

What are Linked Lists?
Arrays have a fixed size and expensive insertion/deletion operations. A linked list is a
dynamic data structure consisting of a set of nodes that are linked to each other by
pointers.

Data

Each node stores
useful information 4
numbers, strings, or
any other data types

Link

A pointer to the next
element in the list,
creating a connection
between nodes

End of List

The last node points to
nullptr, indicating the
end of the structure

Key Features: Size grows and shrinks dynamically, easy insertion and deletion of
elements, sequential data access

Types of Linked Lists

Singly Linked List

Each node contains a pointer only to the next
element. A simple and efficient structure for
basic operations.

Doubly Linked List

Nodes store references to both the next AND
previous elements. Allows bidirectional
traversal of the list.

Circular Linked List

The last node points back to the first, forming a
closed structure without an explicit end.

Comparison with Arrays

Characteristic Array Linked List

Index Access O(1) O(n)

Insertion at Beginning O(n) O(1)

Insertion in Middle O(n) O(n), but simpler

Memory Usage Contiguous Dispersed

Node Implementation in C++

struct Node {
 int data; // �4==O5 G7;4
 Node* next; // ':474F5;P =4 E;54GNM89 G75;
};

// %>744=85 G7;>6
Node* head = new Node{1, nullptr};
head->next = new Node{2, nullptr};
head->next->next = new Node{3, nullptr};

// �5E>4 E?8E:4
Node* temp = head;
while (temp != nullptr) {
 cout << temp->data << " ";
 temp = temp->next;
}

Node Structure

The foundation of any linked list is the node 4 a simple structure containing data and a
pointer to the next element.

Creating a List

Let's create a simple list of three elements and traverse it:

Important! In real programs, always check pointers for
nullptr before use.

Key Operations
01

Add to Front (pushFront)

Create a new node and make it the new head of the list

02

Add to End (pushBack)

Traverse to the end of the list and attach the new node

03

Remove from Front (popFront)

Save a reference to the second element and delete the first

04

Search and Delete by Value

Find the desired element and correctly rearrange the links

void pushFront(Node*& head, int
value) {
 Node* newNode = new
Node{value, head};
 head = newNode;
}

Insert at Front

void popFront(Node*& head) {
 if (!head) return;
 Node* temp = head;
 head = head->next;
 delete temp;
}

Remove from Front

Doubly Linked Lists
Doubly linked lists extend the capabilities of ordinary lists by adding a pointer to the previous element. This simplifies many operations and allows for
efficient traversal of the list in both directions.

1

Node Structure

Contains data and two pointers 4 to the next
and previous elements

2

Bidirectional Traversal

Can move both forwards and backwards
through the list without additional cost

3

Simplified Deletion

Deleting an element does not require
searching for the previous node

struct DNode {
 int data; // �4==O5 C7;4
 DNode* next; // ':474B5;P =4 A;54CNM89 C75;
 DNode* prev; // ':474B5;P =4 ?@54O4CM89 C75;
};

Compromise: Doubly linked lists use more memory (additional pointer) but provide greater flexibility in operations

Application and Conclusion

Dynamic Efficiency

Linked lists are ideal for situations where data size is unknown in advance and often
changes. They efficiently use memory.

Fast Operations

Insertion and deletion at the beginning of the list are performed in O(1), making them
an excellent choice for stacks and queues.

Standard Library

In real C++ projects, use std::list 4 a ready-made, optimized implementation of a
doubly linked list.

Key Takeaway: Linked lists are a fundamental data structure that trades random
access speed for the flexibility of dynamic resizing.

Understanding the principles of linked lists will help you better comprehend more
complex data structures and make informed decisions when choosing the appropriate
container for your tasks.

