Algorithm Flow

Linked Lists in C++

Dynamic data structures for efficient handling of variable-sized data




What are Linked Lists?

Arrays have a fixed size and expensive insertion/deletion operations. [AMIGIGERIEi is a
dynamic data structure consisting of a set of nodes that are linked to each other by

pointers.

Data Link End of List

Each node stores A pointer to the next The last node points to
useful information — element in the list, nullptr, indicating the
numbers, strings, or creating a connection end of the structure
any other data types between nodes

Key Features: Size grows and shrinks dynamically, easy insertion and deletion of
elements, sequential data access




Types of Linked Lists

Data Linked
Structures —— =&
Singly Linked List Doubly Linked List Circular Linked List
Each node contains a pointer only to the next Nodes store references to both the next AND The last node points back to the first, forming a
element. A simple and efficient structure for previous elements. Allows bidirectional closed structure without an explicit end.
basic operations. traversal of the list.
Comparison with Arrays
Characteristic Array Linked List
Index Access O(n)
Insertion at Beginning O(n)
Insertion in Middle O(n) O(n), but simpler

Memory Usage Contiguous Dispersed



Node Implementation in C++

Node Structure

The foundation of any linked list is the node — a simple structure containing data and a
pointer to the next element.

struct Node {
int data; // laHHble y3na
Node* next; // YkasaTesnb Ha cneayroLinin y3en

h

il
I

Il

Creating a List

Let's create a simple list of three elements and traverse it:

// Co3paHvie y3/108B

Node* head = new Node{1, nullptr};
head->next = new Node{2, nullptr};
head->next->next = new Node{3, nullptr}

// O6X0Z crncka In real programs, always check pointers for
Node* temp = head; nullptr before use.

while (temp != nullptr) {
cout << temp->data <<"";
temp = temp->next;

}

Memory Management




Key Operations

O1

Add to Front (pushFront)

Create a new node and make it the new head of the list

02

Add to End (pushBack)

Traverse to the end of the list and attach the new node

03

Remove from Front (popFront)

Save a reference to the second element and delete the first

04

Search and Delete by Value

Find the desired element and correctly rearrange the links

Insert at Front Remove from Front
void pushFront(Node*& head, int void popFront(Node*& head) {
value) { if !head) return;
Node* newNode = new Node* temp = head;
Node{value, head}; head = head->next;
head = newNode; delete temp;

} }




Doubly Linked Lists

Doubly linked lists extend the capabilities of ordinary lists by adding a pointer to the previous element. This simplifies many operations and allows for
efficient traversal of the list in both directions.

1 p 3

Node Structure Bidirectional Traversal Simplified Deletion
Contains data and two pointers — to the next Can move both forwards and backwards Deleting an element does not require
and previous elements through the list without additional cost searching for the previous node
struct DNode {

int data; // JaHHble y3na

DNode* next; // YkasaTtenb Ha cnesyowmnin ysen

DNode* prey; // YKasatenb Ha npeablayLmia y3en

h

[JJ Compromise: Doubly linked lists use more memory (additional pointer) but provide greater flexibility in operations



Application and Conclusion

Dynamic Efficiency

Linked lists are ideal for situations where data size is unknown in advance and often
changes. They efficiently use memory.

Fast Operations

Insertion and deletion at the beginning of the list are performed in O(1), making them
an excellent choice for stacks and queues.

@

Standard Library

In real C++ projects, use std::list — a ready-made, optimized implementation of a
doubly linked list.

Key Takeaway: Linked lists are a fundamental data structure that trades random
access speed for the flexibility of dynamic resizing.

Understanding the principles of linked lists will help you better comprehend more
complex data structures and make informed decisions when choosing the appropriate
container for your tasks.

ird Library
Ng




